Площадь трапеции: формулы с примерами
Трапеция – четырехугольник у которого две стороны параллельны. Параллельные стороны – это основание, непараллельные стороны – боковые.
Существует несколько основных видов: криволинейная, равнобедренная, произвольная, прямоугольная. Вычисления площади трапеции по формуле разнятся в зависимости от конкретного типа геометрической фигуры.
- Что такое трапеция: типы и отличия
- Площадь произвольной трапеции
- Видео «Трапеция: решение задач»
- Видео «Площадь трапеции»
Что такое трапеция: типы и отличия
Всего существует четыре типа, отличающихся между собой не только вариативностью углов, но и возможным наличием криволинейных отрезков.
- Произвольная – любой четырехугольник, две стороны которого параллельны, а две другие – расположены произвольно (разные по длине и не под прямым углом относительно параллельных сторон).
- Прямоугольная – трапеция, в которой один угол у основания равен 90⁰.
- Равнобедренная (равнобокая) – фигура, обладающая одинаковыми по длине боковыми сторонами.
- Криволинейная трапеция – четырехугольник с парой параллельных сторон и двумя сторонами, ограниченными графиком неотрицательной обязательно непрерывной функции.
Площадь произвольной трапеции
Вариативность расчета площади произвольной трапеции невелика. Ее можно вычислить относительно заданных размеров основания и высоты; посчитать через обозначенные четыре стороны фигуры; решить пример, зная длину средней линии и высоты; по указанным диагоналям и углом между ними; высчитать через основания и два угла.
Формула через основания и высоту
Основная формула расчета данного способа:
Где а и b – параллельные стороны, а h – высота четырехугольника.
Пример задачи: Дана плоская геометрическая фигура, параллельные стороны которой соответствуют длине 12 и 20 см, а высота равна – 10 см. Как найти площадь?
Решение: Допустимое решение согласно вышеприведенной формуле S = (a + b)/2 x h: S = (12 + 20)/2 x 10 = 160 см².
Формула через высоту и среднюю линию
Зная длину средней линии и высоту плоской фигуры, всегда можно найти площадь трапеции, выполнив буквально одно действие:
Где h – высота четырехугольника, а m – средняя линия (прямая, соединяющая середины боковых сторон).
Пример решения задачи: Дана трапеция, в которой длина средней линии – 28 см, а высота фигуры – 19 см. Какова площадь плоского четырехугольника?
Решение: Используя формулу S = hm, подставляем вместо букв цифровые значения из условия задачки. Получаем S = 28 х 19 = 532 см².
Формула через четыре стороны
Этот метод не так прост, как предыдущие. Здесь взяты за основу основные теоремы геометрии, а потому принцип расчета площади трапеции выглядит следующим образом:
Где a, b, c, d – четыре стороны фигуры, причем сторона b в обязательном порядке должна быть длинней а.
Пример вычисления: Даны стороны – a = 2 см, b = 4 см, c = 8 см, d = 7 см. Как найти площадь трапеции?
Формула через диагонали и угол между ними
Вычислить площадь трапеции также можно, зная размеры обеих диагоналей и значения угла между ними.
Обозначения: d₁ и d₂ — первая и вторая диагонали, α – угол между диагоналями.
Пример: Вычислить площадь фигуры при следующих известных значениях — d₁ = 17 см, d₂ = 25 см, α = 35⁰.
Верное решение: S = ½ х 17 х 25 х sin35 = 212,5 х 0,57 = 121,125 см².
Формула через основания и два угла
Еще один вариант вычисления, основанный на расчете площади трапеции посредством длин двух оснований и двух углов.
Значения букв: b, a – длины оснований, α и β – углы.
Как посчитать (пример): Пускай угол α будет равен 67⁰, угол β = 106⁰, длина основания а равно 8 см, размер b = 11 см.
Обучающее видео
Отличным подспорьем в изучении основных типов вычислений площади являются видеоматериалы с доступным, легким языком изложения, подробными объяснениями и примерами решения задач.
Видео «Трапеция: решение задач»
Видео для новичков – доходчиво изложенная информация, содержащая основные формулы вычисления площади трапеции.
Видео «Площадь трапеции»
Видео содержит максимально полную информацию о видах трапеций, правильных буквенных обозначениях и вариантах решений разноплановых задач при помощи всех известных методов и принципов расчета.
Все перечисленные формулы и способы вычисления широко применимы во время изучения геометрии в школах и ВУЗах. Студенту, школьнику и абитуриенту предоставленная информация пригодится в качестве онлайн шпаргалки в период интенсивной подготовки к экзаменам, контрольным работам, написания рефератов, курсовых и подобных работ.